首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Developing imprinted polymer nanoparticles for the selective separation of antidiabetic drugs
Authors:Isma Haq  Adnan Mujahid  Adeel Afzal  Naseer Iqbal  Sadia Zafar Bajwa  Tajamal Hussain  Khurram Shehzad  Hadia Ashraf
Institution:1. Institute of Chemistry, University of the Punjab, Lahore, Pakistan;2. King Fahd University of Petroleum and Minerals, Affiliated Colleges at Hafr Al Batin and Department of Chemistry, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia;3. Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan;4. National Institute of Biotechnology and Genetic Engineering, Faisalabad, Pakistan
Abstract:In this study, new molecularly imprinted polymer (MIP) nanoparticles are designed for selective recognition of different drugs used for the treatment of type 2 diabetes mellitus, i.e. sitagliptin (SG) and metformin (MF). The SG‐ and MF‐imprinted polymer nanoparticles are synthesized by free‐radical initiated polymerization of the functional monomers: methacrylic acid and methyl methacrylate; and the crosslinker: ethylene glycol dimethacrylate. The surface morphology of resultant MIP nanoparticles is studied by atomic force microscopy. Fourier transform infrared spectra of MIP nanoparticles suggest the presence of reversible, non‐covalent interactions between the template and the polymer. The effect of pH on the rebinding of antidiabetic drugs with SG‐ and MF‐imprinted polymers is investigated to determine the optimal experimental conditions. The molecular recognition characteristics of SG‐ and MF‐imprinted polymers for the respective drug targets are determined at low concentrations of SG (50–150 ppm) and MF (5–100 ppm). In both cases, the MIP nanoparticles exhibit higher binding response compared to non‐imprinted polymers. Furthermore, the MIPs demonstrate high selectivity with four fold higher responses toward imprinted drugs targets, respectively. Recycled MIP nanoparticles retain 90% of their drug‐binding efficiency, which makes them suitable for successive analyses with significantly preserved recognition features.
Keywords:Antidiabetic drugs  Metformin  Molecularly imprinted polymers  Sitagliptin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号