首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bonding, structure, and energetics of gaseous E8(2+) and of solid E8(AsF6)2 (E = S, Se)
Authors:Cameron T S  Deeth R J  Dionne I  Du H  Jenkins H D  Krossing I  Passmore J  Roobottom H K
Institution:Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3.
Abstract:The attempt to prepare hitherto unknown homopolyatomic cations of sulfur by the reaction of elemental sulfur with blue S8(AsF6)2 in liquid SO2/SO2ClF, led to red (in transmitted light) crystals identified crystallographically as S8(AsF6)2. The X-ray structure of this salt was redetermined with improved resolution and corrected for librational motion: monoclinic, space group P2(1)/c (No. 14), Z = 8, a = 14.986(2) A, b = 13.396(2) A, c = 16.351(2) A, beta = 108.12(1) degrees. The gas phase structures of E8(2+) and neutral E8 (E = S, Se) were examined by ab initio methods (B3PW91, MPW1PW91) leading to delta fH thetaS8(2+), g] = 2151 kJ/mol and delta fH thetaSe8(2+), g] = 2071 kJ/mol. The observed solid state structures of S8(2+) and Se8(2+) with the unusually long transannular bonds of 2.8-2.9 A were reproduced computationally for the first time, and the E8(2+) dications were shown to be unstable toward all stoichiometrically possible dissociation products En+ and/or E4(2+) n = 2-7, exothermic by 21-207 kJ/mol (E = S), 6-151 kJ/mol (E = Se)]. Lattice potential energies of the hexafluoroarsenate salts of the latter cations were estimated showing that S8(AsF6)2 Se8(AsF6)2] is lattice stabilized in the solid state relative to the corresponding AsF6- salts of the stoichiometrically possible dissociation products by at least 116 204] kJ/mol. The fluoride ion affinity of AsF5(g) was calculated to be 430.5 +/- 5.5 kJ/mol average B3PW91 and MPW1PW91 with the 6-311 + G(3df) basis set]. The experimental and calculated FT-Raman spectra of E8(AsF6)2 are in good agreement and show the presence of a cross ring vibration with an experimental (calculated, scaled) stretching frequency of 282 (292) cm-1 for S8(2+) and 130 (133) cm-1 for Se8(2+). An atoms in molecules analysis (AIM) of E8(2+) (E = S, Se) gave eight bond critical points between ring atoms and a ninth transannular (E3-E7) bond critical point, as well as three ring and one cage critical points. The cage bonding was supported by a natural bond orbital (NBO) analysis which showed, in addition to the E8 sigma-bonded framework, weak pi bonding around the ring as well as numerous other weak interactions, the strongest of which is the weak transannular E3-E7 2.86 A (S8(2+), 2.91 A (Se8(2+)] bond. The positive charge is delocalized over all atoms, decreasing the Coulombic repulsion between positively charged atoms relative to that in the less stable S8-like exo-exo E8(2+) isomer. The overall geometry was accounted for by the Wade-Mingos rules, further supporting the case for cage bonding. The bonding in Te8(2+) is similar, but with a stronger transannular E3-E7 (E = Te) bonding. The bonding in E8(2+) (E = S, Se, Te) can also be understood in terms of a sigma-bonded E8 framework with additional bonding and charge delocalization occurring by a combination of transannular n pi *-n pi * (n = 3, 4, 5), and np2-->n sigma * bonding. The classically bonded S8(2+) (Se8(2+) dication containing a short transannular S(+)-S+ (Se(+)-Se+) bond of 2.20 (2.57) A is 29 (6) kJ/mol higher in energy than the observed structure in which the positive charge is delocalized over all eight chalcogen atoms.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号