首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of radiation-induced mean wavelength shift in optical fibers on the scale factor of interferometric fiber optic gyroscope at a wavelength of 1300 nm
Authors:Jin Jing  Wang Xue-Qin  Lin Song  Song Ning-Fang
Institution:School of Instrument Science and Optic-electronics Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:In order to analyze the effect of wavelength-dependent radiation-induced attenuation (RIA) on the mean transmission wavelength in optical fiber and the scale factor of interferometric fiber optic gyroscopes (IFOGs), three types of polarization-maintaining (PM) fibers is tested by using a 60Co γ -radiation source. The observed different mean wavelength shift (MWS) behaviors for different fibers are interpreted by color-center theory involving dose rate-dependent absorption bands in ultraviolet and visible range and total dose-dependent near infrared absorption bands. To evaluate the mean wavelength variation in fiber coil and the induced scale factor change for space-borne IFOG under low radiation dose in space environment, the influence of dose rate on the mean wavelength is investigated by testing four germanium (Ge) doped fibers and two germanium-phosphorus (Ge-P) codoped fibers irradiated at different dose rates. Experimental results indicate that the Ge-doped fibers show the least mean wavelength shift during irradiation and their mean wavelength of optical signal transmitting in fibers will shift to shorter wavelength in low-dose-rate radiation environment. Finally, the change in the scale factor of IFOG resulting from the mean wavelength shift is estimated and tested, and it is found that the significant radiation-induced scale factor variation must be considered during the design of space-borne IFOG.
Keywords:space radiation  fiber optic gyroscope  scale factor  mean wavelength
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号