首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetically induced decrease in droplet contact angle on nanostructured surfaces
Authors:Zhou Qian  Ristenpart William D  Stroeve Pieter
Institution:Department of Chemical Engineering & Materials Science, University of California Davis, Davis, California 95616, USA.
Abstract:We report a magnetic technique for altering the apparent contact angle of aqueous droplets deposited on a nanostructured surface. Polymeric tubes with embedded superparamagnetic magnetite (Fe(3)O(4)) nanoparticles were prepared via layer-by-layer deposition in the 800 nm diameter pores of polycarbonate track-etched (PCTE) membranes. Etching away the original membrane yields a superparamagnetic film composed of mostly vertical tubes attached to a rigid substrate. We demonstrate that the apparent contact angle of pure water droplets deposited on the nanostructured film is highly sensitive to the ante situm strength of an applied magnetic field, decreasing linearly from 117 ± 1.3° at no applied field to 105 ± 0.4° at an applied field of approximately 500 G. Importantly, this decrease in contact angle did not require an inordinately strong magnetic field: a 15° decrease in contact angle was observed even with a standard alnico bar magnet. We interpret the observed contact angle behavior in terms of magnetically induced conformation changes in the film nanostructure, and we discuss the implications for reversibly switching substrates from hydrophilic to hydrophobic via externally tunable magnetic fields.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号