首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A combined crossed beam and theoretical investigation of O(3P) + C3H3 --> C3H2 + OH
Authors:Lee Hohjai  Joo Sun-Kyu  Kwon Lee-Kyoung  Choi Jong-Ho
Institution:Department of Chemistry and Center for Electro- and Photo-Responsive Molecules, Korea University, 1, Anam-dong, Seoul 136-701, Korea.
Abstract:The radical-radical reaction dynamics of ground-state atomic oxygen O(3P)] with propargyl radicals (C3H3) has first been investigated in a crossed beam configuration. The radical reactants O(3P) and C3H3 were produced by the photodissociation of NO2 and the supersonic flash pyrolysis of precursor propargyl bromide, respectively. A new exothermic channel of O(3P) + C3H3 --> C3H2 + OH was identified and the nascent distributions of the product OH in the ground vibrational state (X 2Pi:nu" = 0) showed bimodal rotational excitations composed of the low- and high-N" components without spin-orbit propensities. The averaged ratios of Pi(A')/Pi(A") were determined to be 0.60 +/- 0.28. With the aid of ab initio theory it is predicted that on the lowest doublet potential energy surface, the reaction proceeds via the addition complexes formed through the barrierless addition of O(3P) to C3H3. The common direct abstraction pathway through a collinear geometry does not occur due to the high entrance barrier in our low collision energy regime. In addition, the major reaction channel is calculated to be the formation of propynal (CHCCHO) + H, and the counterpart C3H2 of the probed OH product in the title reaction is cyclopropenylidene (1c-C3H2) after considering the factors of barrier height, reaction enthalpy and structural features of the intermediates formed along the reaction coordinate. On the basis of the statistical prior and rotational surprisal analyses, the ratio of population partitioning for the low- and high-N" is found to be about 1:2, and the reaction is described in terms of two competing addition-complex mechanisms: a major short-lived dynamic complex and a minor long-lived statistical complex. The observed unusual reaction mechanism stands in sharp contrast with the reaction of O(3P) with allyl radical (C3H5), a second significant conjugated hydrocarbon radical, which shows totally dynamic processes J. Chem. Phys. 117, 2017 (2002)], and should be understood based upon the characteristic electronic structures and reactivity of the intermediates on the potential energy surface.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号