首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories
Authors:Keivan Kiani  Bahman Mehri
Institution:a Department of Civil Engineering, Sharif University of Technology, Azadi Ave., P.O. Box 11365-9313, Tehran, Iran
b Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
Abstract:Dynamic analysis of nanotube structures under excitation of a moving nanoparticle is carried out using nonlocal continuum theory of Eringen. To this end, the nanotube structure is modeled by an equivalent continuum structure (ECS) according to the nonlocal Euler-Bernoulli, Timoshenko and higher order beam theories. The nondimensional equations of motion of the nonlocal beams acted upon by a moving nanoparticle are then established. Analytical solutions of the problem are presented for simply supported boundary conditions. The explicit expressions of the critical velocities of the nonlocal beams are derived. Furthermore, the capabilities of various nonlocal beam models in predicting the dynamic deflection of the ECS are examined through various numerical simulations. The role of the scale effect parameter, the slenderness ratio of the ECS and velocity of the moving nanoparticle on the time history of deflection as well as the dynamic amplitude factor of the nonlocal beams are scrutinized in some detail. The results show the importance of using nonlocal shear deformable beam theories, particularly for very stocky nanotube structures acted upon by a moving nanoparticle with low velocity.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号