首页 | 本学科首页   官方微博 | 高级检索  
     


Free-knot Splines Approximation of s-monotone Functions
Authors:V.N. Konovalov  D. Leviatan
Affiliation:(1) Institute of Mathematics, National Academy of Sciences of Ukraine, Kyiv, 01601, Ukraine;(2) School of Mathematical Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
Abstract:Let I be a finite interval and r,sisinN. Given a set M, of functions defined on I, denote by Delta+sM the subset of all functions yisinM such that the s-difference Deltatausy(sdot) is nonnegative on I, foralltau>0. Further, denote by Delta+sWpr, the class of functions x on I with the seminorm Verbarx(r)VerbarLple1, such that Deltatausxge0, tau>0. Let Mn(hk):={sumi=1ncihk(witthetai)midci,wi, thetaiisinR, be a single hidden layer perceptron univariate model with n units in the hidden layer, and activation functions hk(t)=t+k, tisinR, kisinN0. We give two-sided estimates both of the best unconstrained approximation E(Delta+sWpr,Mn(hk))Lq, k=r–1,r, s=0,1,...,r+1, and of the best s-monotonicity preserving approximation E(Delta+sWpr,Delta+sMn(hk))Lq, k=r–1,r, s=0,1,...,r+1. The most significant results are contained in theorem 2.2.
Keywords:shape preserving  relative width  free-knot spline  order of approximation  single hidden layer perceptron model
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号