首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Non-line-of-sight sound source localization using matched-field processing
Authors:Singh Victor  Knisely Katherine E  Yönak Serdar H  Grosh Karl  Dowling David R
Institution:Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2133, USA. victorsi@umich.edu
Abstract:Acoustic diffraction allows sound to travel around opaque objects and therefore may allow beyond-line-of-sight sensing of remote sound sources. This paper reports simulated and experimental results for localizing sound sources based on fully shadowed microphone array measurements. The generic geometry includes a point source, a solid 90° wedge, and a receiving array that lies entirely in the shadow defined by the source location and the wedge. Source localization performance is assessed via matched-field (MF) ambiguity surfaces as a function of receiving array configuration, and received signal-to-noise ratio for the Bartlett and minimum variance distortionless (MVD) MF processors. Here, the sound propagation model is developed from a Green's function integral treatment. A simple 16 element line array of microphones is tested in three mutually orthogonal orientations. The experiments were conducted using an approximate 50-to-1-scaled tabletop model of a blind city-street intersection and produced ambiguity surfaces from source frequencies between 17.5 and 19 kHz that were incoherently summed. The experimental results suggest that a sound source may be localized by the MVD processor when using fully shadowed arrays that have significant aperture parallel to the edge of the wedge. However, this performance is reduced significantly for signal-to-noise ratios below 40 dB.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号