首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stability of solitary wave trains in Hamiltonian wave systems
Authors:Arnold J M
Institution:Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8LT, Scotland, United Kingdom.
Abstract:A class of Hamiltonian nonlinear wave equations possessing complex solitary waves with exponential decay is studied. It is shown that the interpulse interactions in a train of nearly identical solitary waves with large separations between the individual solitary waves are approximately described by a double Toda lattice system, with two variables at each lattice site. Under certain conditions, which are explicitly identified as Cauchy-Riemann equations, the two dynamical variables are real and imaginary parts of a single complex variable, leading to the complex Toda lattice equations, which is a discrete integrable dynamical system. This analysis generalizes to certain nonintegrable partial differential equations a recent result for the nonlinear Schr?dinger equation, and is important for the study of nonlinear communications channels in optical fibers. An example, the cubic-quintic nonlinear Schr?dinger equation, is worked out in detail to show that the theory can be carried through analytically. The theory is used to determine the stability of an infinite chain of nearly identical pulses separated by large time intervals. The entire theory is nonperturbative in the sense that the nonlinear wave equation need not be a weak perturbation of an integrable one.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号