首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimal dynamic routing in Flexible Manufacturing Systems with limited buffers
Authors:Abraham Seidmann
Institution:(1) William E. Simon Graduate School of Business Administration, University of Rochester, 14627 Rochester, New York, USA
Abstract:An optimal routing policy is obtained for Flexible Manufacturing Systems (FMSs) with limited buffers at the work stations. This policy is used to effectively drive a robotic material handling system. The routing decisions are made by a supervising computer on a real-time basis in order to avoid any work station running out of inputs and to control the blocking of the material handling system. Using our model, general material handling times can be assumed. The optimal policy and several key performance measures are computed, following the problem formulation as a continuous-time, semi-Markovian decision process. Fast convergence and computational stability are ensured by the ergodic solution algorithm augmented to solve the functional equations of the renewal process. The solution algorithm was implemented, tested on an extensive range of problems regarding the structure and the performance of the optimal policy. Complex environments involving diverse processing times, as well as very limited buffer storage, were examined. The interaction between the allocation of buffer spaces to work stations, the structural properties of the optimal monotone (threshold-type) policy and the system performance are also investigated.
Keywords:Flexible manufacturing system  dynamic routing  material handling  robotics  semi-Markovian decision process  optimal control  stochastic optimization
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号