首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In-situ investigation of the adsorption of globular model proteins on stimuli-responsive binary polyelectrolyte brushes
Authors:Uhlmann Petra  Houbenov Nikolay  Brenner Nina  Grundke Karina  Burkert Sina  Stamm Manfred
Institution:Leibniz Institute of Polymer Research Dresden, Dresden, Germany. uhlmannp@ipfdd.de
Abstract:Binary brushes constituted from two incompatible polymers can be used in the form of ultrathin polymeric layers as a versatile tool for surface engineering to tune physicochemical surface characteristics such as wettability, surface charge, chemical composition, and morphology and furthermore to create responsive surface properties. Mixed brushes of oppositely charged weak polyelectrolytes represent a special case of responding surfaces that are sensitive to changes in the pH value of the aqueous environment and therefore represent interesting tools for biosurface engineering. The polyelectrolyte brushes used for this study were composed of two oppositely charged polyelelctrolytes poly(2-vinylpyridine) (P2VP) and poly(acrylic acid) (PAA). The in-situ properties and surface characteristics such as as surface charge, surface tension, and extent of swelling of these brush layers are functions of the pH value of the surrounding aqueous solution. To test the behavior of the mixed polylelctrolyte brushes in contact with biosystems, protein adsorption experiments with globular model proteins were performed at different pH values and salt concentrations (confinement of counterions) of the buffer solutions. The influence of the pH value, buffer salt concentration, and isoelectric points (IEP) of the brush and protein on the adsorbed amount and the interfacial tension during protein adsorption as well as the protein adsorption mechanism postulated in reference to recently developed theories of protein adsorption on polyelectrolyte brushes is discussed. In the salted regime, protein adsorption was found to be similar to the often-described adsorption at hydrophobic surfaces. However, in the osmotic regime the balance of electrostatic repulsion and a strong entropic driving force, "counterion release", was found to be the main influence on protein adsorption.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号