首页 | 本学科首页   官方微博 | 高级检索  
     

基于Transformer的普通话语声识别模型位置编码选择
引用本文:徐冬冬. 基于Transformer的普通话语声识别模型位置编码选择[J]. 应用声学, 2021, 40(2): 194-199
作者姓名:徐冬冬
作者单位:中国航天科工集团第二研究院 研究生院 北京
摘    要:具有自注意机制的Transformer网络在语声识别研究领域渐渐得到广泛关注.该文围绕着将位置信息嵌入与语声特征相结合的方向,研究更加适合普通话语声识别模型的位置编码方法.实验结果得出,采用卷积编码的输入表示代替正弦位置编码,可以更好地融合语声特征上下文联系和相对位置信息,获得较好的识别效果.训练的语声识别系统是在Tr...

关 键 词:自注意力  位置编码  卷积
收稿时间:2020-05-23
修稿时间:2021-03-01

Transformer-based position coding selection of Mandarin speech recognition model
Xu DongDong. Transformer-based position coding selection of Mandarin speech recognition model[J]. Applied Acoustics(China), 2021, 40(2): 194-199
Authors:Xu DongDong
Affiliation:Graduate School of The Secondary Institute of China Aerospace Science and Industry Corp
Abstract:The Transformer network with self-attention mechanism has gradually gained wide attention in the field of speech recognition research. This paper revolves around the direction of embedding location information and speech features, and studies the location coding method that is more suitable for Mandarin speech recognition model. The experimental results show that the input representation of convolutional coding instead of sinusoidal position coding can better integrate the contextual relationship of speech features and relative position information, and obtain better recognition results. The trained speech recognition system is based on the Transformer model and compares four different position coding methods. Combined with the 3-gram language model and the proposed convolutional position coding method, the word recognition error rate on the Chinese speech data set AISHELL-1 is reduced to 8.16%.
Keywords:self-attention   position coding   convolution
本文献已被 维普 等数据库收录!
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号