首页 | 本学科首页   官方微博 | 高级检索  
     检索      

铜催化CO2和1-苯基丙炔的氢羧基化反应机理及区域选择性
引用本文:赵义,刘永军,禚淑萍.铜催化CO2和1-苯基丙炔的氢羧基化反应机理及区域选择性[J].物理化学学报,2015,31(2):237-244.
作者姓名:赵义  刘永军  禚淑萍
作者单位:1. 山东理工大学化学工程学院, 山东 淄博 255049;
2. 中国科学院西北高原生物研究所, 西宁 810001
基金项目:The project was supported by the National Natural Science Foundation of China,Combined with Shandong Provincial Natural Science Foundation of China (ZR2014BL012).国家自然科学基金,山东省自然科学基金联合专项
摘    要:采用密度泛函理论(DFT)方法研究了在还原剂(EtO)3SiH存在下, 铜(I) (Cl2IPrCuF)催化CO2插入1-苯基丙炔生成α,β不饱和羧酸的反应机理. 计算结果表明, Cl2IPrCuF 首先与(EtO)3SiH 生成活性催化剂Cl2IPrCuH,然后经历三个步骤完成催化反应: (1) Cl2IPrCuH 与1-苯基丙炔加成生成烯基铜中间体. 由于炔烃的不对称性,烯基铜中间体有两种同分异构体, 最后可导致生成两种对应的α,β不饱和羧酸衍生物; (2) CO2插入烯基铜中间体得到羧基铜中间体; (3) (EtO)3SiH 与羧基铜中间体发生σ转位反应形成最终产物, 同时重新生成催化剂Cl2IPrCuH. 理论研究还表明, 生成两种α,β不饱和羧酸衍生物的反应路径所对应的决速步骤不同, 在Path a 中炔烃插入反应和CO2插入反应都可能是整个催化反应的决速步骤, 自由能垒分别为68.6 和67.8 kJ·mol-1, 而在Path b中, 仅炔烃插入反应是整个催化反应的决速步骤, 自由能垒为78.7 kJ·mol-1. 此结果很好地给出了实验上两种α,β不饱和羧酸衍生物收率不同的原因. 炔烃与Cl2IPrCuH的加成决定了反应的区域选择性, 其中电子效应是影响反应区域选择性的主要原因.

关 键 词:CO2  1-苯基丙炔  密度泛函理论  氢羧基化  区域选择性  
收稿时间:2014-07-04

Reaction Mechanism and Regioselectivity of Cu(I)-Catalyzed Hydrocarboxylation of 1-Phenyl-propyne with Carbon Dioxide
ZHAO Yi,LIU Yong-Jun,ZHUO Shu-Ping.Reaction Mechanism and Regioselectivity of Cu(I)-Catalyzed Hydrocarboxylation of 1-Phenyl-propyne with Carbon Dioxide[J].Acta Physico-Chimica Sinica,2015,31(2):237-244.
Authors:ZHAO Yi  LIU Yong-Jun  ZHUO Shu-Ping
Institution:1. School of Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong Province, P. R. China; 2. Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, P. R. China
Abstract:Density functional theory (DFT) calculations have been used to conduct a detailed study of the mechanism involved the copper(I)-catalyzed hydrocarboxylation of 1-phenyl-propyne using CO2 and hydrosilane. Theoretical calculations suggested that the activated catalyst Cl2IPrCuH is initially generated in situ by the reaction of Cl2IPrCuF with (EtO)3SiH, and that the entire catalytic reaction involves three steps, including (1) the addition of Cl2IPrCuH to 1-phenyl-propyne to afford two isomeric copper alkenyl intermediates, which lead to the formation of the corresponding final α,β-unsaturated carboxylic acid derivatives; (2) CO2 insertion to give the corresponding copper carboxylate intermediate; and (3) σ-bond metathesis of the copper carboxylate intermediate with a hydrosilane to provide the corresponding silyl ester with the regeneration of the active catalyst. The results of our calculations show that the rate-limiting steps for the two paths leading to the two α,β-unsaturated carboxylic acid derivatives are different. In Path a, the alkyne and CO2 insertion steps were both identified as possible rate-limiting steps, with free energy barriers of 68.6 and 67.8 kJ·mol-1, respectively. However, in Path b, the alkyne insertion step was identified as the only possible rate-limiting step with an energy barrier of 78.7 kJ·mol-1. These results were in agreement with the experimental observations. It was also found that the alkyne insertion step controlled the regioselectivity of the products, and that electronic effects were responsible for the experimentally observed regioselectivity.
Keywords:CO2  1-Phenyl-propyne  Density functional theory  Hydrocarboxylation  Regioselectivity
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号