首页 | 本学科首页   官方微博 | 高级检索  
     


Analysis of frequency-dependent series resistance and interface states of In/SiO2/p-Si (MIS) structures
Authors:A. Birkan Sel  uk, N. Tu  luo  lu, S. Karadeniz,S. Bilge Ocak
Affiliation:

aDepartment of Nuclear Electronics and Instrumentation, Sarayköy Nuclear Research and Training Center, 06983 Saray, Ankara, Turkey

Abstract:
In this work, the investigation of the interface state density and series resistance from capacitance–voltage (CV) and conductance–voltage (G/ωV) characteristics in In/SiO2/p-Si metal–insulator–semiconductor (MIS) structures with thin interfacial insulator layer have been reported. The thickness of SiO2 film obtained from the measurement of the oxide capacitance corrected for series resistance in the strong accumulation region is 220 Å. The forward and reverse bias CV and G/ωV characteristics of MIS structures have been studied at the frequency range 30 kHz–1 MHz at room temperature. The frequency dispersion in capacitance and conductance can be interpreted in terms of the series resistance (Rs) and interface state density (Dit) values. Both the series resistance Rs and density of interface states Dit are strongly frequency-dependent and decrease with increasing frequency. The distribution profile of RsV gives a peak at low frequencies in the depletion region and disappears with increasing frequency. Experimental results show that the interfacial polarization contributes to the improvement of the dielectric properties of In/SiO2/p-Si MIS structures. The interface state density value of In/SiO2/p-Si MIS diode calculated at strong accumulation region is 1.11×1012 eV−1 cm−2 at 1 MHz. It is found that the calculated value of Dit (≈1012 eV−1 cm−2) is not high enough to pin the Fermi level of the Si substrate disrupting the device operation.
Keywords:MIS Schottky diodes   CV   GV   Frequency dependence   Series resistance   Interface states
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号