首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes
Authors:Mihály Kovács  Stig Larsson  Fredrik Lindgren
Institution:1. Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin, New Zealand
2. Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, 412 96, G?teborg, Sweden
Abstract:We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element method and the time discretization via an I-stable rational approximation to the exponential function. It is found that the rate of weak convergence is twice that of strong convergence. Furthermore, in contrast to the parabolic case, higher order schemes in time, such as the Crank-Nicolson scheme, are worthwhile to use if the solution is not very regular. Finally we apply the theory to parabolic equations and detail a weak error estimate for the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic heat equation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号