首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Capacity augmentation of a supply chain for a short lifecycle product: A system dynamics framework
Authors:Narasimha B Kamath  Rahul Roy
Institution:Management Information Systems Group, Indian Institute of Management Calcutta, D.H. Road, Kolkata 700 104, India
Abstract:For an innovative product characterized by short product lifecycle and high demand uncertainty, investment in capacity buildup has to be done cautiously. Otherwise either the product’s market diffusion is impeded or the manufacturer is left with unutilized capacity. Using the right information for making capacity augmentation decisions is critical in facing this challenge. In this paper, we propose a method for identifying critical information flows using the system dynamics model of a two-echelon supply chain. The fundamental premise of system dynamics methodology is that (system) structure determines (its) behavior. Using loop dominance analysis method we study the feedback loop structure of the supply chain system. The outcome is a set of dominant loops that determine the dynamics of capacity growth. It is revealed that the delivery delay information has little effect while the loop that connects retail sales with production order affects the dynamics significantly. Modifying this loop yields appropriate capacity augmentation decisions resulting in higher performance. What-if analyses bring out effects of modifying other structural elements. In conclusion, we claim that the information feedback based methodology is general enough to be useful in designing decision support systems for capacity augmentation. The limitations of the model are also discussed and possible extensions identified.
Keywords:Supply chain  Capacity planning  System dynamics  Feedback loop dominance  Forecasting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号