首页 | 本学科首页   官方微博 | 高级检索  
     检索      

三苯基膦:转换硫醇保护的纳米粒子成[Au25(PPh3)10(SR)5Cl2]2+
引用本文:祝敏,李漫波,姚传好,夏楠,赵燕,闫楠,廖玲文,伍志鲲.三苯基膦:转换硫醇保护的纳米粒子成[Au25(PPh3)10(SR)5Cl2]2+[J].物理化学学报,2018,34(7):792-798.
作者姓名:祝敏  李漫波  姚传好  夏楠  赵燕  闫楠  廖玲文  伍志鲲
作者单位:1 中国科学院固体物理研究所,中国科学院材料物理重点实验室,安徽省纳米材料与技术重点实验室,中国科学院纳米卓越心,合肥 2300312 中国科学技术大学,合肥 230026
基金项目:国家自然科学基金(21222301);国家自然科学基金(21528303);国家自然科学基金(21603234);国家自然科学基金(21771186);国家自然科学基金(21171170);国家自然科学基金(21601193);国家重大科学研究计划(2013CB934302);合肥物质科学技术中心方向项目培育基金(2014FXCX002);中国科学院创新国际团队资助项目
摘    要:我们在此报道了一种未曾发现的有趣现象:尽管Au23(SC6H11)16]、Au24(SC2H4Ph)20 (Ph:苯环)、Au36(TBBT)28 (TBBTH:对叔丁基苯硫酚)、Au38(SC2H4Ph)24、混合Aux(SC2H4Ph)y团簇及3 nm的金纳米粒子有不同的组成、结构、尺寸和保护性硫醇配体,但它们在三苯基膦(PPh3)作用下,均能统一地经由亚稳的Au11(PPh3)8Cl2]2+最终转化为稳定的双二十面体Au25(PPh3)10(SR)5Cl2]2+ (SR:硫醇配体)。换句话说,三苯基膦是这些硫醇保护的纳米粒子的统一转化器。然而,聚乙烯吡咯烷酮(PVP)/柠檬酸盐(Citrate)保护的金纳米粒子和Ag25(SPhMe2)18] (Me:甲基)在同样的条件下,却不能转化为Au25(PPh3)10(SR)5Cl2]2+或Ag25(PPh3)10(SR)5Cl2]2+,暗示了硫醇保护的金纳米粒子具有与三苯基膦反应的独特性能。另外,我们考察了配体对双二十面体Au25(PPh3)10(SR)5Cl2]2+团簇荧光性能的影响。

关 键 词:硫醇保护金纳米粒子  三苯基膦  统一转化器  荧光  
收稿时间:2017-09-12

PPh3: Converts Thiolated Gold Nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+
Min ZHU,Manbo LI,Chuanhao YAO,Nan XIA,Yan ZHAO,Nan YAN,Lingwen LIAO,Zhikun WU.PPh3: Converts Thiolated Gold Nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+[J].Acta Physico-Chimica Sinica,2018,34(7):792-798.
Authors:Min ZHU  Manbo LI  Chuanhao YAO  Nan XIA  Yan ZHAO  Nan YAN  Lingwen LIAO  Zhikun WU
Institution:1. Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, P. R. China;2. University of Science and Technology of China, Hefei 230026, P. R. China
Abstract:Research on gold nanoclusters is at the frontier of nanoscience and nanotechnology. The introduction of the first phosphine-protected gold nanocluster, Au11(PPh3)7(SCN)3 (where PPh3 stands for triphenylphosphine and Ph stands for benzene), can be dated back to 1969. As research in the field progressed, many structures of phosphine-protected nanoclusters such as Au5, Au8, Au13, and Au39 were reported. However, the stability of these phosphine-protected nanoclusters was not satisfactory, which handicapped their research and application. In an attempt to find alternatives for phosphine-protected nanoclusters, thiolated gold nanoclusters have attracted extensive attention in recent years. So far, there has been great progress primarily owing to the development of wet-chemical synthesis techniques, among which the utilization of ligand-exchange has been proved to be very effective to synthesize thiolated gold nanoclusters. It can be easily understood that phosphine in gold nanoclusters can be exchanged with thiolate because the latter has stronger affinity for gold. However, we recently found that the reverse ligand-exchange, i.e., the exchange of thiolate with phosphine, can also take place. Some questions have naturally arisen: Is the reverse ligand-exchange only applicable to superatomic Au25(SR)18] (SR: thiolate) nanoclusters? Can it occur in other thiolated gold nanoclusters? If so, is this reverse ligand-exchange also dependent on the starting nanoclusters? These intriguing issues have inspired us to conduct this work.
Keywords:Thiolated gold nanoparticles  PPh3  Universal converter  Luminescence  
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号