首页 | 本学科首页   官方微博 | 高级检索  
     


Large eddy simulation of swirling particle-laden flow in a model axisymmetric combustor
Authors:Joseph C. Oefelein   Vaidyanathan Sankaran  Tomasz G. Drozda
Affiliation:aCombustion Research Facility, Sandia National Laboratories, Livermore, CA 94551-9051, USA
Abstract:
This paper focuses on the application of the large eddy simulation (LES) technique to a swirling particle-laden flow in a model combustion chamber. A series of calculations have been performed and compared directly with detailed experimental measurements. The computational domain identically matches the laboratory configuration, which effectively isolates effects related to dilute particle dispersion and momentum coupling. Results highlight the predictive capabilities of LES when implemented with the appropriate numerics, grid resolution (as dictated by the class of models employed) and well-defined boundary conditions. The case study provides a clearer understanding of the effectiveness and feasibility of current state-of-the-art models and a quantitative understanding of relevant modeling issues by analyzing the characteristic parameters and scales of importance. The novel feature of the results presented is that they establish a baseline level of confidence in our ability to simulate complex flows at conditions representative of those typically observed in gas-turbine (and similar) combustors.
Keywords:LES   Spray modeling   Swirling particle-laden flow
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号