首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of Shell Formation on Morphological Structure,Optical and Emission Intensity on Aqueous Dispersible NaYF4:Ce/Tb Nanoparticles
Authors:Anees A Ansari  A K Parchur  B Kumar  S B Rai
Institution:1.King Abdullah Institute for Nanotechnology,King Saud University,Riyadh,Saudi Arabia;2.Department of Physics,Banaras Hindu University,Varanasi,India
Abstract:A highly water-dispersible NaYF4:Ce/Tb (core), NaYF4:Ce/Tb@NaYF4(core/shell) and NaYF4:Ce/Tb@NaYF4@SiO2 (core/shell/SiO2) nanoparticles (NPs) were synthesized via a general synthesis approach. The growth of an inert NaYF4 and silica shell (~14 nm) around the core-NPs resulted in an increase of the average size of the nanopaticles as well as broadening of their size distribution. The optical band-gap energy slightly decreases after shell formation due to the increase the crystalline size. To optimize the influence of shell formation a comparative analysis of photoluminescence properties (excitation, emission, and luminescence decay time) of the core, core/shell, and core/shell/SiO2 NPs were measured. The emission intensity was significantly enhanced after inert shell formation around the surface of the core NPs. The Commission International de l’Eclairage chromaticity coordinates of the emission spectrum of core, core/shell, core/shell/SiO2 NPs lie closest to the standard green color emission at 545 nm. By quantitative spectroscopic measurements of surface-modified core-NPs, it was suggested that encapsulation with inert and silica layers was found to be effective in retaining both luminescence intensity and dispersibility in aqueous environment. Considering the high aqueous dispersion and enhanced luminescence efficiency of the core-NPs make them an ideal luminescent material for luminescence bioimaging and optical biosensors.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号