首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantum Mechanics/Molecular Mechanics Studies on the Mechanism of Action of Cofactor Pyridoxal 5′‐Phosphate in Ornithine 4,5‐Aminomutase
Authors:Dr Jiayun Pang  Prof Nigel S Scrutton  Prof Michael J Sutcliffe
Institution:1. School of Science, University of Greenwich, Medway Campus, Central Avenue, Chatham Maritime, Kent, ME4?4TB (UK);2. Manchester Institute of Biotechnology and Faculty of Life Sciences, The University of Manchester, 131 Princess Street, Manchester M1?7DN (UK);3. Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1?7DN (UK)
Abstract:A computational study was performed on the experimentally elusive cyclisation step in the cofactor pyridoxal 5′‐phosphate (PLP)‐dependent D ‐ornithine 4,5‐aminomutase (OAM)‐catalysed reaction. Calculations using both model systems and a combined quantum mechanics/molecular mechanics approach suggest that regulation of the cyclic radical intermediate is achieved through the synergy of the intrinsic catalytic power of cofactor PLP and the active site of the enzyme. The captodative effect of PLP is balanced by an enzyme active site that controls the deprotonation of both the pyridine nitrogen atom (N1) and the Schiff‐base nitrogen atom (N2). Furthermore, electrostatic interactions between the terminal carboxylate and amino groups of the substrate and Arg297 and Glu81 impose substantial “strain” energy on the orientation of the cyclic intermediate to control its trajectory. In addition the “strain” energy, which appears to be sensitive to both the number of carbon atoms in the substrate/analogue and the position of the radical intermediates, may play a key role in controlling the transition of the enzyme from the closed to the open state. Our results provide new insights into several aspects of the radical mechanism in aminomutase catalysis and broaden our understanding of cofactor PLP‐dependent reactions.
Keywords:density functional calculations  enzyme catalysis  enzyme models  molecular mechanics  radical reactions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号