首页 | 本学科首页   官方微博 | 高级检索  
     


Ge‐Mediated Modification in Ta3N5 Photoelectrodes with Enhanced Charge Transport for Solar Water Splitting
Authors:Jianyong Feng  Dapeng Cao  Zhiqiang Wang  Wenjun Luo  Jiajia Wang  Prof. Zhaosheng Li  Prof. Zhigang Zou
Affiliation:National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Ecomaterials and Renewable Energy Research Center, Nanjing University, 22 Hankou Road, Nanjing 210093 (P.R. China)
Abstract:Ta3N5 is a promising photoanode candidate for photoelectrochemical water splitting, with a band gap of about 2.1 eV and a theoretical solar‐to‐hydrogen efficiency as high as 15.9 % under AM 1.5 G 100 mW cm?2 irradiation. However, the presently achieved highest photocurrent (ca. 7.5 mA cm?2) on Ta3N5 photoelectrodes under AM 1.5 G 100 mW cm?2 is far from the theoretical maximum (ca. 12.9 mA cm?2), which is possibly due to serious bulk recombination (poor bulk charge transport and charge separation) in Ta3N5 photoelectrodes. In this study, we show that volatilization of intentionally added Ge (5 %) during the synthesis of Ta3N5 promotes the electron transport and thereby improves the charge‐separation efficiency in bulk Ta3N5 photoanode, which affords a 320 % increase of the highest photocurrent comparing with that of pure Ta3N5 photoanode under AM 1.5 G 100 mW cm?2 simulated sunlight.
Keywords:charge transfer  electron transport  energy conversion  photochemistry  tantalum nitride
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号