首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electronic structure of octagonal boron nitride nanotubes
Abstract:The effect of an octagonal lattice configuration on a boron nitride nanotube is explored using first principle calculations. Calculations show that the formational energy of an octagonal boron nitride nanotube (o‐BNNT) is an exothermic reaction. Boron and nitrogen atoms within an o‐BNNT have an average of 2.88 electrons and 9.09 electrons, respectively, indicating ionic‐like bonding. In addition, the electronic structure of the octagonal boron nitride nanotube shows semiconductive properties, while h‐BNNT is reported to be an insulator. Additional o‐BNNTs with varying diameters are calculated where the results suggest that the diameter has an effect on the binding energy and bandgap of the o‐BNNT. The defect sites of the o‐BNNT are reactive against hydrogen where a boron defect is particularly reactive. Thus, this work suggests that physical and chemical properties of a boron nitride nanotube can be tailored and tuned by controlling the lattice configuration of the nanotube.
Keywords:boron nitride nanotube  defect  hydrogen adsorption  octagonal boron nitride
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号