Abstract: | The mechanical properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers reinforced rigid polyurethane (PU) composites were studied, and the effects of the fiber surface treatment and the mass fraction were discussed. Chromic acid was used to treat the UHMWPE fibers, and polyurethane composites were prepared with 0.1 to 0.6 wt% as‐received and treated UHMWPE fibers. Attenuated total reflection Fourier transform infrared demonstrated that oxygen‐containing functional groups were efficiently grafted to the fiber surface. The mechanical performance tests of the UHMWPE fibers/PU composites were conducted, and the results revealed that the treated UHMWPE fibers/PU composites had better tensile, compression, and bending properties than as‐received UHMWPE fibers/PU composites. Thermal gravimetric analyzer showed that the thermal stability of the treated fiber composites were improved. The interface bonding of PU composites were investigated by scanning electron microscopy and dynamic mechanical analysis, and the results indicated that the surface modification of UHMWPE fiber could improve the interaction between fiber and PU, which played a positive role in mechanical properties of composites. |