首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temperature‐induced pseudopolymorphism of molecular salts from a pyridyl bis‐urea macrocycle and naphthalene‐1,5‐disulfonic acid
Abstract:Molecular salts, often observed as cocrystals, play an important role in the fields of pharmaceutics and materials science, where salt formation is used to tune the properties of active pharmaceutical ingredients (APIs) and improve the stability of solid‐state materials. Salt formation via a proton‐transfer reaction typically alters hydrogen‐bonding motifs and influences supramolecular assembly patterns. We report here the molecular salts formed by the pyridyl bis‐urea macrocycle 3,5,13,15,21,22‐hexaazatricyclo15.3.1.17,11]docosa‐1(21),7(22),8,10,17,19‐hexaene‐4,14‐dione, ( 1 ), and naphthalene‐1,5‐disulfonic acid (H2NDS) as two salt cocrystal solvates, namely 4,14‐dioxo‐3,5,13,15,21,22‐hexaazatricyclo15.3.1.17,11]docosa‐1(21),7(22),8,10,17,19‐hexaene‐21,22‐diium naphthalene‐1,5‐disulfonate dimethyl sulfoxide disolvate, C16H20N6O22+·C10H6O6S22?·2C2H6OS, ( 2 ), and the corresponding monosolvate, C16H20N6O22+·C10H6O6S22?·C2H6OS, ( 3 ). This follows the ΔpKa rule such that there is a proton transfer from H2NDS to ( 1 ), forming the reported molecular salts through hydrogen bonding. Prior to salt formation, ( 1 ) is relatively planar and assembles into columnar structures. The salt cocrystal solvates were obtained upon slow cooling of dimethyl sulfoxide–acetonitrile solutions of the molecular components from two temperatures (363 and 393 K). The proton transfer to ( 1 ) significantly alters the conformation of the macrocycle, changing the formerly planar macrocycle into a step‐shaped conformation with transcis urea groups in ( 2 ) or into a bowl‐shape conformation with transtrans urea groups in ( 3 ).
Keywords:polymorphism  crystal structure  pyridyl bis‐ureas  molecular salts  naphthalenedisulfonic acid  macrocycle
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号