首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A stable boundary elements method for magnetohydrodynamic channel flows at high Hartmann numbers
Abstract:The article is devoted to extension of boundary element method (BEM) for solving coupled equations in velocity and induced magnetic field for time dependent magnetohydrodynamic (MHD) flows through a rectangular pipe. The BEM is equipped with finite difference approach to solve MHD problem at high Hartmann numbers up to 106. In fact, the finite difference approach is used to approximate partial derivatives of unknown functions at boundary points respect to outward normal vector. It yields a numerical method with no singular boundary integrals. Besides, a new approach is suggested in this article where transforms 2D singular BEM's integrals to 1D nonsingular ones. The new approach reduces computational cost, significantly. Note that the stability of the numerical scheme is proved mathematically when computational domain is discretized uniformly and Hartmann number is 40 times bigger than length of boundary elements. Numerical examples show behavior of velocity and induced magnetic field across the sections.
Keywords:boundary element method  magneto‐hydrodynamic equation  high Hartmann numbers  stability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号