首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Renormalization group second‐order approximation for singularly perturbed nonlinear ordinary differential equations
Abstract:We consider a 2 time scale nonlinear system of ordinary differential equations. The small parameter of the system is the ratio ? of the time scales. We search for an approximation involving only the slow time unknowns and valid uniformly for all times at order O(?2). A classical approach to study these problems is Tikhonov's singular perturbation theorem. We develop an approach leading to a higher order approximation using the renormalization group (RG) method. We apply it in 2 steps. In the first step, we show that the RG method allows for approximation of the fast time variables by their RG expansion taken at the slow time unknowns. Next, we study the slow time equations, where the fast time unknowns are replaced by their RG expansion. This allows to rigorously show the second order uniform error estimate. Our result is a higher order extension of Hoppensteadt's work on the Tikhonov singular perturbation theorem for infinite times. The proposed procedure is suitable for problems from applications, and it is computationally less demanding than the classical Vasil'eva‐O'Malley expansion. We apply the developed method to a mathematical model of stem cell dynamics.
Keywords:higher order approximation  ordinary differential equations  quasi steady‐state approximation  renormalization group  singular perturbations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号