首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Accurate prediction of vertical electronic transitions of Ni(II) coordination compounds via time dependent density functional theory
Abstract:Time dependent density functional theory calculations are completed for five Ni(II) complexes formed by polydentate peptides to predict the electronic absorption spectrum. The ligands examined were glycyl‐glycyl‐glycine (GGG), glycyl‐glycyl‐glycyl‐glycine (GGGG), glycyl‐glycyl‐histidine (GGH), glycyl‐glycyl‐cysteine (GGC), and triethylenetetramine (trien). Fifteen functionals and two basis sets were tested. On the basis of the mean absolute percent deviation (MAPD), the ranking among the functionals is: HSE06 ∼ MPW1PW91 ∼ PBE0 > ω‐B97x‐D ∼ B3P86 ∼ B3LYP ∼ CAM‐B3LYP > PBE ∼ BLYP ∼ BP86 > TPSS > TPSSh > BHandHLYP > M06 ≫ M06‐2X. Concerning the basis sets, the triple‐ζ def2‐TZVP performs better than the double‐ζ LANL2DZ. With the functional HSE06 and basis set def2‐TZVP the MAPD with respect to the experimental λmax is 1.65% with a standard deviation of 1.26%. The absorption electronic spectra were interpreted in terms of vertical excitations between occupied and virtual MOs based on Ni‐d atomic orbitals. The electronic structure of the Ni(II) species is also discussed.
Keywords:electronic structure  nickel  peptides  time dependent density functional theory  UV‐Vis spectroscopy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号