首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Formulation of a killed whole cell pneumococcus vaccine - effect of aluminum adjuvants on the antibody and IL-17 response
Authors:Harm HogenEsch  Anisa Dunham  Bethany Hansen  Kathleen Anderson  Jean-Francois Maisonneuve  Stanley L Hem
Institution:1. Department of Comparative Pathobiology, Purdue University, 725 Harrison Street, West Lafayette, IN, 47907, USA
2. PATH, Seattle, WA, USA
3. Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, USA
Abstract:

Background

Streptococcus pneumoniae causes widespread morbidity and mortality. Current vaccines contain free polysaccharides or protein-polysaccharide conjugates, and do not induce protection against serotypes that are not included in the vaccines. An affordable and broadly protective vaccine is very desirable. The goal of this study was to determine the optimal formulation of a killed whole cell pneumococcal vaccine with aluminum-containing adjuvants for intramuscular injection.

Methods

Four aluminium-containing adjuvants were prepared with different levels of surface phosphate groups resulting in different adsorptive capacities and affinities for the vaccine antigens. Mice were immunized three times and the antigen-specific antibody titers and IL-17 responses in blood were analyzed.

Results

Although all adjuvants induced significantly higher antibody titers than antigen without adjuvant, the vaccine containing aluminum phosphate adjuvant (AP) produced the highest antibody response when low doses of antigen were used. Aluminum hydroxide adjuvant (AH) induced an equal or better antibody response at high doses compared with AP. Vaccines formulated with AH, but not with AP, induced an IL-17 response. The vaccine formulated with AH was stable and retained full immunogenicity when stored at 4°C for 4 months.

Conclusions

Antibodies are important for protection against systemic streptococcal disease and IL-17 is critical in the prevention of nasopharyngeal colonization by S. pneumoniae in the mouse model. The formulation of the whole killed bacterial cells with AH resulted in a stable vaccine that induced both antibodies and an IL-17 response. These experiments underscore the importance of formulation studies with aluminium containing adjuvants for the development of stable and effective vaccines.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号