首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Features of the Quenching of the Triplet States of Water-Soluble Porphyrins by Molecular Oxygen
Authors:N N Kruk  I N Nichiporovich
Institution:1. Institute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, 70 F. Skorina Ave., Minsk, 220072, Belarus
Abstract:Using the methods of time-resolved absorption spectroscopy, we have investigated the features of quenching, by molecular oxygen, of the excited triplet states of water-soluble 5,10,15,20-tetrakis-(4-N-methylpyridyl)-porphyrin (H2TMPyP) and 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin (H2TSPP) in water–ethanol solutions. It has been revealed that for both compounds the rate constant of quenching of the triplet states increases with increasing viscosity of the medium. Quenching of the excited triplet states of the dissociated (in water) and undissociated (in ethanol) forms of water-soluble porphyrins occurs with a different efficiency, and the rate constant of quenching the triplet states by molecular oxygen k T thereby is higher for the dissociated form. It has been shown by means of mathematical modeling that the experimental results obtained can be described in terms of the change in the rate constants of intracomplex transitions in the porphyrin–oxygen collisional complex at varied solution viscosity and their difference for the dissociated and undissociated forms of water-soluble porphyrin.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号