Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown |
| |
Authors: | Marco Konle Thomas Sattelmayer |
| |
Affiliation: | 1. Lehrstuhl für Thermodynamik, TU München, Garching, Germany
|
| |
Abstract: | ![]() The interaction of heat release by chemical reaction and the flow dominates flame transition in swirling flows caused by combustion induced vortex breakdown (CIVB). The simultaneous application of 1 kHz high-speed particle imaging velocimetry (PIV) for the analysis of the flow field and OH planar laser-induced fluorescence for the detection of the flame front is particularly useful for the improvement of the understanding of the observed fast CIVB driven flame propagation. For the first time, the combination of both techniques was successfully applied to confined swirling flows. In the study, the flow field characteristics of an aerodynamically stabilized burner system with CIVB are analyzed in great depth. The influence of geometric parameters of the swirl generator was investigated and conclusions concerning the proper burner design of vortex breakdown premix burners are drawn from the experimental results. In particular, the effect of the vortex core with respect to the stability of the swirl stabilized burner is analyzed. The contribution of combustion to vortex breakdown is shown comparing isothermal and reacting flows. The presented data reveals that at the onset of CIVB driven flame transition, the azimuthal vorticity leads to the formation of a closed recirculation bubble at the tip of the internal recirculation zone. Once this bubble propagates upstream, the flame is able to follow and propagate relative to the bulk flow velocity with a velocity far beyond the turbulent flame speed. The interaction of reaction and flow was observed for different volumetric heat releases. The experiments confirm the CIVB theory of the authors, which was initially developed on the basis of a CFD study alone. Both the volume expansion and the baroclinic torque have an effect on whether fast flame propagation occurs. Whereas the volume expansion caused by the heat release stabilizes the flow field and the reaction, the baroclinic torque stimulates flame transition. For upstream propagation the flame tip has to have a position downstream of the stagnation point of the bubble. Else, the required transition inducing force is insufficient and the flame remains stable. In case the flame reaches positions too close or even upstream of the stagnation point, the fast propagation is interrupted or even prohibited. The key finding that the relative position of flame and stagnation bubble governs CIVB is discussed on the basis of high-speed LIF/PIV data as well as chemiluminescence. Since essentially the same behavior has been observed before in tests of a totally different swirler design and flow field, the conclusion can be made that the root cause for CIVB independent of the special geometry has been found. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|