Three‐arm star block copolymers of aromatic polyether and polystyrene from chain‐growth condensation polymerization,atom transfer radical polymerization,and click reaction |
| |
Authors: | Yuka Yamazaki Akihiro Yokoyama Tsutomu Yokozawa |
| |
Affiliation: | Department of Material and Life Chemistry, Kanagawa University, Rokkakubashi, Kanagawa‐ku, Yokohama 221‐8686, Japan |
| |
Abstract: | Well‐defined (AB)3 type star block copolymer consisting of aromatic polyether arms as the A segment and polystyrene (PSt) arms as the B segment was prepared using atom transfer radical polymerization (ATRP), chain‐growth condensation polymerization (CGCP), and click reaction. ATRP of styrene was carried out in the presence of 2,4,6‐tris(bromomethyl)mesitylene as a trifunctional initiator, and then the terminal bromines of the polymer were transformed to azide groups with NaN3. The azide groups were converted to 4‐fluorobenzophenone moieties as CGCP initiator units by click reaction. However, when CGCP was attempted, a small amount of unreacted initiator units remained. Therefore, the azide‐terminated PSt was then used for click reaction with alkyne‐terminated aromatic polyether, obtained by CGCP with an initiator bearing an acetylene unit. Excess alkyne‐terminated aromatic polyether was removed from the crude product by means of preparative high performance liquid chromatography (HPLC) to yield the (AB)3 type star block copolymer (Mn = 9910, Mw/Mn = 1.10). This star block copolymer, which contains aromatic polyether segments with low solubility in the shell unit, exhibited lower solubility than A2B or AB2 type miktoarm star copolymers. In addition, the obtained star block copolymer self‐assembled to form spherical aggregates in solution and plate‐like structures in film. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012 |
| |
Keywords: | atom transfer radical polymerization (ATRP) chain‐growth condensation polymerization click reaction self‐assembly star polymer |
|
|