Synthetic and structural studies of [6]-, [7]- and [10]metacyclophanes |
| |
Authors: | S. Hirano H. Hara T. Hiyama S. Fujita H. Nozaki |
| |
Affiliation: | Department of Industrial Chemistry, Kyoto University, Yoshida, Kyoto 606, Japan |
| |
Abstract: | A new preparative sequence from 2,3-polymethylene-2-cyclopentenone 5 to 2,6-polymethylenebromobenzenes 3 (n = 6, 7, 10) and 2,6-polymethylenephenyllithiums 6 has been found. The reaction of 6 with various electrophiles produces a number of new compounds to disclose the unique reactivity of the aryl C-Li moiety surrounded by the polymethylene chain. Photolysis of 3a and 3b provides transannular products 8, 10 and 11, all arising from the proximity between the aromatic bromine and the aliphatic hydrogen intraannularly opposed to be removed as HBr. Spectrometric study gives quantitative data of the dependence of the molecular geometry upon the chain length and the aromatic substituents. The energy barriers ΔGc≠ of the conformational flipping are 17·4 kcal/mol (Tc 76·5°) for [6]metacyclophane (7a), 11·5 kcal/mol (Tc ?28°) for [7]metacyclophane (7b), ·8 kcal/mol for [10]metacyclophane (7c). The lower-energy process of the aliphatic chain in [6]metacyclophane derivatives is the pseudorotation with substituent-dependent barrier ΔGc≠ 11·1 kcal/mol (Tc ?31·5°) for 7a, 12·4 kcal/mol (Tc ?4·5°) for 3a and 12·7 kcal/mol (Tc 1·0°) for 12a. The rather large rotational barrier is attributed to the compressed structure of each system. The benzene ring distortion of the cyclophanes is deduced from the bathochromic shift of the B-band and the diamagnetic shift of the benzene proton signals in the PMR. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|