Structural and Infrared Spectroscopic Study on Solvation of Acetylene by Protonated Water Molecules |
| |
Authors: | Xiang-tao Kong Xin Lei Qin-qin Yuan Bing-bing Zhang Zhi Zhao Dong Yang Shu-kang Jiang Dong-xu Dai Ling Jiang |
| |
Abstract: | The effect of solvation on the conformation of acetylene has been studied by adding one water molecule at a time. Quantum chemical calculations of the H+(C2H2)(H2O)n (n=1-5) clusters indicate that the H2O molecules prefer to form the OH…π interaction rather than the CH…O interaction. This solvation motif is different from that of neutral (C2H2)(H2O)n (n=1-4) clusters, in which the H2O molecules prefer to form the CH…O and OH…C H-bonds. For the H+(C2H2)(H2O)n cationic clusters, the first solvation shell consists of one ring structure with two OH…π H-bonds and three water molecules, which is completed at n=4. Simulated infrared spectra reveal that vibrational frequencies of OH…π H-bonded O-H stretching afford a sensitive probe for exploring the solvation of acetylene by protonated water molecules. Infrared spectra of the H+(C2H2)(H2O)n(n=1-5) clusters could be readily measured by the infrared photodissociation technique and thus provide useful information for the understanding of solvation processes. |
| |
Keywords: | Acetylene Water Solvation Infrared photodissociation spectroscopy Quantum chemical calculation |
|
| 点击此处可从《化学物理学报(中文版)》浏览原始摘要信息 |
|
点击此处可从《化学物理学报(中文版)》下载免费的PDF全文 |