首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A direct relativistic four-component multiconfiguration self-consistent-field method for molecules
Authors:Thyssen Jørn  Fleig Timo  Jensen Hans Jørgen Aa
Institution:Department of Physics and Chemistry, University of Southern Denmark, DK-5230 Odense M, Denmark.
Abstract:A new direct relativistic four-component Kramers-restricted multiconfiguration self-consistent-field (KR-MCSCF) code for molecules has been implemented. The program is based upon Kramers-paired spinors and a full implementation of the binary double groups (D(2h)(*) and subgroups). The underlying quaternion algebra for one-electron operators was extended to treat two-electron integrals and density matrices in an efficient and nonredundant way. The iterative procedure is direct with respect to both configurational and spinor variational parameters; this permits the use of large configuration expansions and many basis functions. The relativistic minimum-maximum principle is implemented in a second-order restricted-step optimization algorithm, which provides sharp and well-controlled convergence. This paper focuses on the necessary modifications of nonrelativistic MCSCF methodology to obtain a fully variational KR-MCSCF implementation. The general implementation also allows for the use of molecular integrals from a two-component relativistic Hamiltonian as, for example, the Douglas-Kroll-Hess variants. Several sample applications concern the determination of spectroscopic properties of heavy-element atoms and molecules, demonstrating the influence of spin-orbit coupling in MCSCF approaches to such systems and showing the potential of the new method.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号