A six-dimensional H(2)-H(2) potential energy surface for bound state spectroscopy |
| |
Authors: | Hinde Robert J |
| |
Affiliation: | Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600, USA. rhinde@utk.edu |
| |
Abstract: | We present a six-dimensional potential energy surface for the (H(2))(2) dimer based on coupled-cluster electronic structure calculations employing large atom-centered Gaussian basis sets and a small set of midbond functions at the dimer's center of mass. The surface is intended to describe accurately the bound and quasibound states of the dimers (H(2))(2), (D(2))(2), and H(2)-D(2) that correlate with H(2) or D(2) monomers in the rovibrational levels (v,j)=(0,0), (0,2), (1,0), and (1,2). We employ a close-coupled approach to compute the energies of these bound and quasibound dimer states using our potential energy surface, and compare the computed energies for infrared and Raman transitions involving these states with experimentally measured transition energies. We use four of the experimentally measured dimer transition energies to make two empirical adjustments to the ab initio potential energy surface; the adjusted surface gives computed transition energies for 56 experimentally observed transitions that agree with experiment to within 0.036 cm(-1). For 26 of the 56 transitions, the agreement between the computed and measured transition energies is within the quoted experimental uncertainty. Finally, we use our potential energy surface to predict the energies of another 34 not-yet-observed infrared and Raman transitions for the three dimers. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|