Electrochemical and Structural Characterisation of Dip-Coated Fe/Ti Oxide Films Prepared by the Sol-Gel Route |
| |
Authors: | M. Maček B. Orel T. Meden |
| |
Affiliation: | (1) National Institute of Chemistry, Hajdrihova 19, 61115 Ljubljana, Slovenia;(2) Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 61001 Ljubljana, Slovenia |
| |
Abstract: | Thin solid films of mixed Fe/Ti oxide composition (Fe/Ti molar ratios: 0.5∶1, 1∶1, 1.5∶1) have been made from Fe(NO3)3 alcoholic solution to which Ti(OiPr)4 was added. Films have been deposited by the dip-coating technique and heat-treated at 300°C and 500°C. Powders of Fe/Ti oxide heat-treated at 300°C are amorphous, while powders annealed at 500°C for 40 hours transformed to mixed rutile, pseudobrookite and hematite phases. The structure of the XRD amorphous films was identified with the help of near-normal reflection absorption (6°) (IRRA) and near-grazing incidence angle (NGIA) spectroscopy. NGIA FT-IR spectra of films are characterised with a single phonon mode appearing in the spectral range 600–950 cm−1 which shifts with increasing Ti concentration from 675 cm−1 (Fe2O3) to 904 cm−1 (TiO2) thus exhibiting one-mode behavior. Electrochemical investigations made with the help of cyclic voltammetry (CV) and chronocoulometry (CPC) performed in 0.01M LiOH and in 1M LiClO4/propylene carbonate electrolytes revealed that films are able to uptake reversibly Li+ ions with a charge capacity (Q) per film thickness (d) in the range 0.1–0.26 mC/cm2nm and 0.06 mC/cm2nm, respectively. The temperature at which the films were prepared alters the rate of Li+ insertion which is faster for less compact films obtained at 300°C. In situ UV-VIS spectroelectrochemical measurements revealed that Fe/Ti oxide films bleached in the UV spectral region (300 nm<λ<450 nm) and colored in the VIS spectral region (450 nm<λ<800 nm), thus exhibiting mixed anodic and cathodic electrochromism. |
| |
Keywords: | Fe/Ti oxide thin films counter electrode electrochromism |
本文献已被 SpringerLink 等数据库收录! |
|