首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric estimation of an extreme-value copula in arbitrary dimensions
Authors:Gordon Gudendorf Johan Segers
Affiliation:
  • Institut de Statistique, Université catholique de Louvain, Voie du Roman Pays 20, B-1348 Louvain-la-Neuve, Belgium
  • Abstract:
    Inference on an extreme-value copula usually proceeds via its Pickands dependence function, which is a convex function on the unit simplex satisfying certain inequality constraints. In the setting of an i.i.d. random sample from a multivariate distribution with known margins and an unknown extreme-value copula, an extension of the Capéraà-Fougères-Genest estimator was introduced by D. Zhang, M. T. Wells and L. Peng [Nonparametric estimation of the dependence function for a multivariate extreme-value distribution, Journal of Multivariate Analysis 99 (4) (2008) 577-588]. The joint asymptotic distribution of the estimator as a random function on the simplex was not provided. Moreover, implementation of the estimator requires the choice of a number of weight functions on the simplex, the issue of their optimal selection being left unresolved.A new, simplified representation of the CFG-estimator combined with standard empirical process theory provides the means to uncover its asymptotic distribution in the space of continuous, real-valued functions on the simplex. Moreover, the ordinary least-squares estimator of the intercept in a certain linear regression model provides an adaptive version of the CFG-estimator whose asymptotic behavior is the same as if the variance-minimizing weight functions were used. As illustrated in a simulation study, the gain in efficiency can be quite sizable.
    Keywords:60F17   62G32   62H20
    本文献已被 ScienceDirect 等数据库收录!
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号