首页 | 本学科首页   官方微博 | 高级检索  
     

EMD与神经网络在气液两相流流型识别中的应用
引用本文:王强,周云龙,崔玉峰,孙斌. EMD与神经网络在气液两相流流型识别中的应用[J]. 工程热物理学报, 2007, 28(3): 442-444
作者姓名:王强  周云龙  崔玉峰  孙斌
作者单位:东北电力大学,吉林,吉林,132012;东北电力大学,吉林,吉林,132012;东北电力大学,吉林,吉林,132012;东北电力大学,吉林,吉林,132012
摘    要:本文提出了EMD与Elman神经网络相结合的气液两相流流型识别的新方法.将压差波动信号经验模态分解(EMD)后的固有模态函数(IMF)进行分析、提取IMF能量作为Elman神经网络的输入特征向量,对水平管内的气液两相流流型进行识别.实验结果表明:该方法优于BP网络且稳定、识别率高,具有可行性.

关 键 词:气液两相流  流型识别  经验模态分解(EMD)  Elman神经网络
文章编号:0253-231X(2007)03-0442-03
修稿时间:2006-12-03

APPLIED STUDY OF EMD AND NEURAL NETWORKS ON FLOW REGIME IDENTIFICATION FOR GAS-LIQUID TWO-PHASE FLOW
WANG Qiang,ZHOU Yun-Long,CUI Yu-Feng,SUN Bin. APPLIED STUDY OF EMD AND NEURAL NETWORKS ON FLOW REGIME IDENTIFICATION FOR GAS-LIQUID TWO-PHASE FLOW[J]. Journal of Engineering Thermophysics, 2007, 28(3): 442-444
Authors:WANG Qiang  ZHOU Yun-Long  CUI Yu-Feng  SUN Bin
Abstract:In this article a flow regime identification method using the EMD combined with Elman neural network was put forward.Firstly the method analyzes the intrinsic mode function (IMF) obtained after the empirical mode decomposition (EMD),then extracts IMF energy as the input feature vectors of the Elman neural network,at last flow regime identification of the gas-liquid two- phase flow in a horizontal pipe can be performed.The experimental results show that this method is superior to BP neural network,and it is not only stable but also higher identification.The results prove the method is feasible.
Keywords:gas-liquid two-phase flow  flow regime identification  hilbert-huang transform  elman neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号