首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two-dimensional model of a large area, inductively coupled,rectangular plasma source for chemical vapor deposition
Authors:Giuliani  JL Shamamian  VA Thomas  RE Apruzese  JP Mulbrandon  M Rudder  RA Hendry  RC Robson  AE
Institution:Div. of Plasma Phys., Naval Res. Lab., Washington, DC;
Abstract:A novel design for an inductively coupled, rectangular plasma source is described. The design encompasses several key issues of large area thin film growth by chemical vapor deposition: structural integrity, electrostatic screening, substrate temperature control and maximal growth surface. A test reactor has been utilized to grow diamond films over ~1800 cm2 at 13 MHz and ~1 torr pressure with 45 kW coupled power. The design is readily scalable to larger areas. To analyze the axial plasma uniformity, a two-dimensional (2-D) simulation model is presented. The electromagnetic coupling, nonequilibrium plasma chemistry and multispecies diffusion are self-consistently treated. In this 2-D approach, the slotted Faraday screen behaves as a diamagnetic medium in transmitting the magnetic field. Results are compared with experimental data for the hydrogen plasma extent, electron and gas temperatures. Neutral gas thermal conduction and hydrogen recombination dominate the energy deposition to the wall and in turn govern the plasma length. A tradeoff between quality and growth area is predicted for the reactor as the pressure is decreased
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号