首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Low-temperature performance of InP-based long-wavelength VCSELs
Authors:A Lytkine  A Lim  J Bacque  W Jäger  J Tulip
Institution:(1) Electrical & Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada;(2) Chemistry Centre, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
Abstract:We have studied, for the first time, the parameters of long-wavelength InP-based buried tunnel junction (BTJ) VCSELs with substrate temperature varied in the range between 150 and 330 K. The BTJ-VCSELs with threshold currents <1 mA were designed by VERTILAS (Germany) to operate near 1512 nm and 1577 nm at room temperature (models VL-1512 and VL-1577, respectively). Reducing the substrate temperature of the lasers from room temperature to 150 K resulted in more than a fourfold increase of the threshold injection current accompanied with threefold and twofold increases in output power and slope efficiency, respectively. We have observed continuous single-mode tuning over intervals up to ∼20 nm (VL-1512) and ∼22 nm (VL-1577) at constant injection currents and substrate temperatures varied in a 180 K range. The emission wavelength was found to shift linearly with temperature with rates of 0.11 nm/K and 0.12 nm/K for lasers VL-1512 and VL-1577, respectively. The single-mode laser output reached ∼3 mW for both lasers cooled down to 173 K. Gas sensors based on BTJ-VCSELs can be temperature tuned over wide spectral intervals using either a cooler or a low ambient temperature to control laser substrate temperature. Ultra-sensitive gas concentration measurements under low ambient temperatures may include chemical analysis of the lower earth stratosphere and of the martian atmosphere. PACS 42.55.Px; 42.62.Fi; 39.30.+w
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号