首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxygen activation by the noncoupled binuclear copper site in peptidylglycine alpha-hydroxylating monooxygenase. Reaction mechanism and role of the noncoupled nature of the active site
Authors:Chen Peng  Solomon Edward I
Institution:Department of Chemistry, Stanford University, Stanford, California 94305, USA.
Abstract:Reaction thermodynamics and potential energy surfaces are calculated using density functional methods to investigate possible reactive Cu/O(2) species for H-atom abstraction in peptidylglycine alpha-hydroxylating monooxygenase (PHM), which has a noncoupled binuclear Cu active site. Two possible mononuclear Cu/O(2) species have been evaluated, the 2-electron reduced Cu(II)(M)-OOH intermediate and the 1-electron reduced side-on Cu(II)(M)-superoxo intermediate, which could form with comparable thermodynamics at the catalytic Cu(M) site. The substrate H-atom abstraction reaction by the Cu(II)(M)-OOH intermediate is found to be thermodynamically accessible due to the contribution of the methionine ligand, but with a high activation barrier ( approximately 37 kcal/mol, at a 3.0-A active site/substrate distance), arguing against the Cu(II)(M)-OOH species as the reactive Cu/O(2) intermediate in PHM. In contrast, H-atom abstraction from substrate by the side-on Cu(II)(M)-superoxo intermediate is a nearly isoenergetic process with a low reaction barrier at a comparable active site/substrate distance ( approximately 14 kcal/mol), suggesting that side-on Cu(II)(M)-superoxo is the reactive species in PHM. The differential reactivities of the Cu(II)(M)-OOH and Cu(II)(M)-superoxo species correlate to their different frontier molecular orbitals involved in the H-atom abstraction reaction. After the H-atom abstraction, a reasonable pathway for substrate hydroxylation involves a "water-assisted" direct OH transfer to the substrate radical, which generates a high-energy Cu(II)(M)-oxyl species. This provides the necessary driving force for intramolecular electron transfer from the Cu(H) site to complete the reaction in PHM. The differential reactivity pattern between the Cu(II)(M)-OOH and Cu(II)(M)-superoxo intermediates provides insight into the role of the noncoupled nature of PHM and dopamine beta-monooxygenase active sites, as compared to the coupled binuclear Cu active sites in hemocyanin, tyrosinase, and catechol oxidase, in O(2) activation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号