首页 | 本学科首页   官方微博 | 高级检索  
     

游客情感计算的文本大数据挖掘方法比较研究
引用本文:李君轶,任涛,陆路正. 游客情感计算的文本大数据挖掘方法比较研究[J]. 浙江大学学报(理学版), 2021, 47(4): 507-520. DOI: 10.3785/j.issn.1008-9497.2020.04.014
作者姓名:李君轶  任涛  陆路正
基金项目:国家自然科学基金面上项目(41571135);陕西省重点产业创新链(群)-社会发展领域项目(2019ZDLSF07-04);中央高校基本科研业务费专项资金资助项目(14SZZD02).
摘    要:旅游文本大数据以其方便、快捷和低门槛的特点为游客情感计算提供了极大便利,已经成为旅游大数据的主要来源之一。基于大数据理论和情感理论,以文本大数据为数据源,在全面梳理国内外情感计算相关成果的基础上,利用人工智能中的逻辑/算法编程方法、机器学习方法、深度学习方法对旅游文本大数据进行挖掘,探索最佳的基于文本大数据的游客情感计算方法。研究发现:(1)基于情感词典的游客情感计算模型,其核心是构建情感词典和设计情感计算规则,方法简单,容易实现,适用语料范围广。(2)机器学习,用统计学方法抽取文本中的特征项,具有非线性特征,可靠性较线性特征的情感词典方法高。(3)基于深度学习技术的游客情感计算,效果良好,准确率在85%以上。训练多领域的文本语料易于移植,实用性强,且泛化能力好,较适合大数据时代游客情感计算研究。

关 键 词:旅游文本大数据  情感计算  情感词典  机器学习  深度学习  
收稿时间:2019-06-10

A comparative study of big text data mining methods on tourist emotion computing
LI Junyi,REN Tao,LU Luzheng. A comparative study of big text data mining methods on tourist emotion computing[J]. Journal of Zhejiang University(Sciences Edition), 2021, 47(4): 507-520. DOI: 10.3785/j.issn.1008-9497.2020.04.014
Authors:LI Junyi  REN Tao  LU Luzheng
Affiliation:1.School of Geography and Tourism, Shaanxi Normal University, Xi’an 710119,China
2.Shaanxi Key Laboratory of Tourism Informatics, Xi’an 710119, China
Abstract:The big tourism text data has greatly facilitated the emotional calculation of tourists with its convenience, rapidity and low threshold, and has become a main sources of tourism big data. Under the guidance of big data theory and emotional theory, we adopt the logic / algorithm programming method, machine learning method to mine the big tourism text data, and explore the best tourist emotional computing method. The research findings are as follows: (1) The core of the emotional calculation model for tourists based on sentiment dictionary is to construct emotional dictionary and design emotional calculation rules. The idea is easy to implement with a wide range of applicable corpus.(2)The machine learning method uses statistical methods to extract feature items in the text, and its non-linear feature improves the reliability of emotion calculation comparing with the linear feature of sentiment dictionary method. (3)The emotional calculation of tourists based on the deep learning has a good effect, and the accuracy rate has reached to 85% or higher. The training of multi-domain text corpus is easy to transplant, practical and general, and suitable for the emotional computing research of tourists in the era of big data.
Keywords:the text of tourism big data  affective computing  emotion dictionary  machine learning  deep learning  
点击此处可从《浙江大学学报(理学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(理学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号