首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Aging of oil-in-water emulsions: the role of the oil
Authors:Egger Holger  McGrath Kathryn M
Institution:School of Chemical and Physical Sciences, MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand.
Abstract:Controlling stability and aging of emulsions is important from commercial and scientific perspectives. Achieving such control comes through gaining an understanding of the relationship between emulsion constituents and microstructure and how these influence the kinetics and mechanism of destabilisation. We present here an investigation determining the rate of destabilisation as a function of time for a series of water/n-alkane/Triton X-100 oil-in-water emulsions. The time dependence of the emulsions was investigated using static light scattering, PFG-NMR and measurement of gross phase separation. By changing the chain length of the oil from hexane to tetradecane, an almost five orders of magnitude variation in emulsion lifetime could be achieved, while maintaining most of the other chemical and physical characteristics of the emulsions. Further, we show that while Ostwald ripening is the dominant destabilisation mechanism, two distinct regimes are evident. Initially, we observed an enhanced Ostwald ripening regime due to the presence of oil-swollen micelles in the aqueous continuum, that is a depletion flocculation mechanism is followed. The presence of oil-swollen micelles was confirmed using PFG-NMR. The micelles aid the gross oil transport between the discrete oil domains. Upon phase separation the oil-swollen micelles are predominantly removed from the emulsion along with the excess water resulting in a concomitant reduction in the ripening rate, producing the more general Ostwald ripening cubic dependence of droplet radius as a function of time for the lower molecular weight oils. The oils with higher molecular weight (decane and above), however, were observed to switch over to destabilisation via creaming. PFG-NMR was shown to be a powerful technique to fully probe emulsion microstructure as a function of time with droplet size and spacing being directly obtained from the data.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号