首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A theoretical study of the reaction of N(4 S) with nitrogen dioxide on the N2O2 potential energy surface
Authors:Ming-Hui Zuo  Hui-Ling Liu  Xu-Ri Huang  Shu-Xin Cui
Institution:1. College of Chemistry and Chemical Engineering, Mu Danjiang Normal University, Mu Danjiang, 157012, China
2. State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, China
Abstract:The reaction of N(4 S) radical with NO2 molecule has been studied theoretically using density functional theory and ab initio quantum chemistry method. Both singlet and triplet electronic state N2O2] potential energy surfaces (PESs) are calculated at the G3B3 level of theory. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/cc-pVTZ single-point energy calculation is performed on the basis of the geometries obtained at the Becke??s three parameter Lee-Yang-Parr B3LYP/6-311++G(d, p) level. On the singlet PES of the title reaction, it is shown that the most feasible pathway should be as follows. The atomic radical N attacking the NO bond of the NO2 molecule first to form the adduct 1 N(NO)O, followed by one of the NO bond broken to give intermediate 2 ONNO, and then to the major products P1 (2NO). On the triplet PES of the title reaction, it is shown that the most favorable pathway should be the atomic radical N attacking the N-atom of NO2 firstly to form the adduct 7 NN(OO), followed by one of the NO bonds breaking to give intermediate 8 NNOO, and then leading to the major products P2 (O2 + N2). As efficient routes to the reduction of NO2 to form N2 and O2 are sought, both kinetic and thermodynamic considerations support the viability of this channel. All the involved transition states for generation of (2NO), (3O + N2O), and (O2 + N2) lie much lower than the reactants. Thus, the novel reaction N + NO2 can proceed effectively even at low temperatures and it is expected to play a role in both combustion and interstellar processes. The other reaction pathways are less competitive due to thermodynamical or kinetic factors. On the basis of the analysis of the kinetics of all path-ways through which the reactions proceed, we expect that the competitive power of reaction pathways may vary with experimental conditions for the title reaction. The calculated reaction heats of formation are in good agreement with that obtained experimentally.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号