摘 要: | 彩色眼底图像视网膜血管分割对于临床医学诊断有重要价值。提出了一种基于改进卷积神经网络的视网膜血管分割方法。首先,将残差学习和密集连接网络(DenseNet)相结合,更充分地利用每一层的特征;通过增加短连接的方式,缩短了低层特征图到高层特征图之间的路径,强化了特征的传播能力。其次,为了提取更多细小血管,在编码器-解码器结构的网络中加入了空洞卷积,在不增加参数的情况下增加感受野。实验结果表明,与现存其他深度学习方法相比,所提出网络结构的参数数量更少,在DRIVE标准数据集上平均准确率达到0.9556,灵敏度达到0.8036,特异性达到0.9778,受试者工作特性(ROC)曲线下的面积(AUC)达到0.9800,比现存其他深度学习方法的分割效果更优。
|