首页 | 本学科首页   官方微博 | 高级检索  
     

基于区域聚类分割的点云特征线提取
摘    要:
提出一种非结构化点云特征线提取方法,其过程主要分为区域分割和特征检测两个阶段。在区域分割阶段,引入社会粒子群优化模糊C-均值聚类算法对点云数据进行区域聚类,得到边界清晰的各个分区,便于后续边界特征的提取;在特征检测阶段,对各个分区进行局部径向基函数曲面重构,以获取各个分区内采样点的曲率信息。提出基于平均曲率计算的局部特征权值,并通过局部特征权值和曲率极值法对特征点进行双重检测。并通过建立特征点的最小生成树构建特征曲线。对不同点云模型进行特征线提取实验,结果表明,本文方法既能够提取点云模型中的显著特征和尖锐特征,也能够很好地提取特征强度变化的曲线特征。

本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号