首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental and computational study of small (N = 1-16) stoichiometric zinc and cadmium chalcogenide clusters
Authors:Sanville Edward  Burnin Andrei  Belbruno Joseph J
Institution:Center for Nanomaterials Research and Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA.
Abstract:Zinc selenide, cadmium sulfide, and cadmium selenide clusters were produced by direct laser ablation and analyzed in a time-of-flight mass spectrometer. The positive-ion mass spectra indicated that clusters composed of six and thirteen monomer units were ultrastable in all cases. The geometries and energies of the neutral and positively charged M(n)X(n) clusters up to n = 16 were obtained computationally at the B3LYP level of theory using the SKBJ basis set for the metal atoms and the SKBJ(d,2df) basis set for the chalcogen atoms. Small neutral and positive clusters (n = 1-4) have planar geometries, neutral three-dimensional clusters have the geometry of closed-cage polyhedra, and cationic three-dimensional clusters have structures with a pair of two-coordinated atoms. Physical properties of the clusters as a function of size are reported. The relative stability of the positive stoichiometric clusters provides a thermodynamic explanation for the relative stability observed experimentally from the laser-ablation mass spectrometry.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号