Abstract: | ![]() In this paper we derive many infinite families of explicit exact formulas involving either squares or triangular numbers, two of which generalize Jacobi's 4 and 8 squares identities to 4n2 or 4n(n + 1) squares, respectively, without using cusp forms. In fact, we similarly generalize to infinite families all of Jacobi's explicitly stated degree 2, 4, 6, 8 Lambert series expansions of classical theta functions. In addition, we extend Jacobi's special analysis of 2 squares, 2 triangles, 6 squares, 6 triangles to 12 squares, 12 triangles, 20 squares, 20 triangles, respectively. Our 24 squares identity leads to a different formula for Ramanujan's tau function (n), when n is odd. These results, depending on new expansions for powers of various products of classical theta functions, arise in the setting of Jacobi elliptic functions, associated continued fractions, regular C-fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. The Schur function form of these infinite families of identities are analogous to the -function identities of Macdonald. Moreover, the powers 4n(n + 1), 2n2 + n, 2n2 – n that appear in Macdonald's work also arise at appropriate places in our analysis. A special case of our general methods yields a proof of the two Kac–Wakimoto conjectured identities involving representing a positive integer by sums of 4n2 or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson's C nonterminating 6 5 summation theorem, and Andrews' basic hypergeometric series proof of Jacobi's 2, 4, 6, and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n2 and n(n + 1) squares. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Sierpinski (1907), Uspensky (1913, 1925, 1928), Bulygin (1914, 1915), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Bell (1919), Estermann (1936), Rankin (1945, 1962), Lomadze (1948), Walton (1949), Walfisz (1952), Ananda-Rau (1954), van der Pol (1954), Krätzel (1961, 1962), Bhaskaran (1969), Gundlach (1978), Kac and Wakimoto (1994), and, Liu (2001). We list these authors by the years their work appeared. |