Specific detection of Lewis x-carbohydrates in biological samples using liquid chromatography/multiple-stage tandem mass spectrometry |
| |
Authors: | Hashii Noritaka Kawasaki Nana Itoh Satsuki Harazono Akira Matsuishi Yukari Hayakawa Takao Kawanishi Toru |
| |
Affiliation: | Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan. |
| |
Abstract: | The Lewis x structure [Lex, Galbeta1-4(Fucalpha1-3)GlcNAc] motif is one of the tumor antigens and plays an important role in oncogenesis, development, cellular differentiation and adhesion. The detection of Lex-carbohydrates and their structural analysis are necessary to clarify the role of Lex in several biological events. Mass spectrometry has been preferably used for the structural analysis of carbohydrates. Especially, collision-induced dissociation (CID) tandem mass spectrometry (MS/MS), which causes a glycosidic bond cleavage, is used for carbohydrate sequencing. However, Lex cannot be identified by MS/MS due to the existence of the positional isomers, such as Lewis a [Galbeta1-3(alpha1-4Fuc)GlcNAc]. In the present study, we demonstrate the specific detection of Lex-carbohydrates in a biological sample by using multiple-stage MS/MS (MSn). Using pyridylaminated oligosaccharides bearing Lex, we found that the Lex-motif yields a cross-ring fragment by the cleavage of a bond between C-3 and C-4 of GlcNAc in Gal(Fuc)GlcNAc. The Lex-specific cross-ring fragment ion at m/z 259 was effectively detected by sequential scans, consisting of a full MS1 scan, data-dependent CID MS2 scan, MS3 of [Gal(Fuc)GlcNAc+Na]+ at m/z 534, and MS4 of [GalGlcNAc+Na]+ at m/z 388. The sequential scan was applied to N-linked oligosaccharide profiling using a LC/ESI-MSn system equipped with a graphitized carbon column. We successfully detected the Lex-motif and elucidated the structures of several Lex and Lewis y [(Fucalpha1-2)Galbeta1-4(Fucalpha1-3)GlcNAc] oligosaccharides in the murine kidney used as a model tissue. Our method is expected to be a powerful tool for the specific detection of the Lex-motif, and structural elucidation of Lex-carbohydrates in biological samples. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|