首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
卷积神经网络的缺陷类型识别分析
作者姓名:
高子洋
师芳芳
张碧星
苏业旺
作者单位:
中国科学院声学研究所,中国科学院声学研究所,中国科学院声学研究所,中国科学院力学研究所
摘 要:
该文提出一种基于卷积神经网络直接对阵列超声检测原始信号进行缺陷类型识别的方法,该方法无需对超声回波原始信号进行特征提取.文章研究对比了不同卷积神经网络及其优化的识别性能.首先采用超声相控阵系统对不同试块上的平底孔、球底孔、通孔三种缺陷进行超声检测,然后利用LeNet5、VGG16和ResNet三种卷积神经网络对一维和二...
关 键 词:
convolutional neural network
ultrasonic testing
defect type recognition
收稿时间:
2021-03-26
修稿时间:
2022-03-01
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载
免费
的PDF全文
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号